- uniformly integrable
- мат.равномерно интегрируемый
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Uniform integrability — The concept of uniform integrability is an important concept in functional analysis and probability theory. If μ is a finite measure, a subset is said to be uniformly integrable if Rephrased with a probabilistic language, the definition… … Wikipedia
Dominated convergence theorem — In measure theory, Lebesgue s dominated convergence theorem provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and almost everywhere convergence of a sequence of functions. The dominated… … Wikipedia
Fatou's lemma — In mathematics, Fatou s lemma establishes an inequality relating the integral (in the sense of Lebesgue) of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after the French… … Wikipedia
Doob–Meyer decomposition theorem — The Doob–Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and a continuous increasing process. It is named for J. L.… … Wikipedia
Renewal theory — is the branch of probability theory that generalizes Poisson processes for arbitrary holding times . Applications include calculating the expected time for a monkey who is randomly tapping at a keyboard to type the word Macbeth and comparing the… … Wikipedia
Doob's martingale convergence theorems — In mathematics specifically, in stochastic analysis Doob s martingale convergence theorems are a collection of results on the long time limits of supermartingales, named after the American mathematician Joseph Leo Doob. Contents 1 Statement of… … Wikipedia
Convergence of random variables — In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to … Wikipedia
Girsanov theorem — In probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure which… … Wikipedia
Doob-Meyer decomposition theorem — The Doob Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and a continuous increasing process. It is named for J. L.… … Wikipedia
Lévy's convergence theorem — In probability theory Lévy s convergence theorem (sometimes also called Lévy s dominated convergence theorem) states that for a sequence of random variables (X n)^infty {n=1} where *X nxrightarrow{a.s.} X and *|X n| < Y, where Y is some random… … Wikipedia
Vitali convergence theorem — In mathematics, the Vitali convergence theorem is a generalization of the more well known dominated convergence theorem of Lebesgue. It is useful when a dominating function cannot be found for the sequence of functions in question; when such a… … Wikipedia